Error bounds for least squares approximation by polynomials
نویسندگان
چکیده
منابع مشابه
Discrete Least Squares Approximation by Trigonometric Polynomials
We present an efficient and reliable algorithm for discrete least squares approximation of a real-valued function given at arbitrary distinct nodes in [0, 2tt) by trigonometric polynomials. The algorithm is based on a scheme for the solution of an inverse eigenproblem for unitary Hessenberg matrices, and requires only O(mn) arithmetic operations as compared with 0(mn ) operations needed for alg...
متن کاملUniform approximation by discrete least squares polynomials
We study uniform approximation of differentiable or analytic functions of one or several variables on a compact set K by a sequence of discrete least squares polynomials. In particular, if K satisfies a Markov inequality and we use point evaluations on standard discretization grids with the number of points growing polynomially in the degree, these polynomials provide nearly optimal approximant...
متن کاملVector Orthogonal Polynomials and Least Squares Approximation
We describe an algorithm for complex discrete least squares approximation, which turns out to be very efficient when function values are prescribed in points on the real axis or on the unit circle. In the case of polynomial approximation, this reduces to algorithms proposed by Rutishauser, Gragg, Harrod, Reichel, Ammar and others. The underlying reason for efficiency is the existence of a recur...
متن کاملLeast Squares Approximation by One-Pass Methods with Piecewise Polynomials
We propose several one-pass methods for data fitting in which a piecewise polynomial is used as an approximating function. The polynomial pieces are calculated step-by-step by the method of least squares as the data is -----------,scaIIIIed umy-once-from the begimring La tIre end. To calculate the least squares fitting in each step, we use three classes of data, namely: the data in the current ...
متن کاملBackward Error Bounds for Constrained Least Squares Problems ∗
We derive an upper bound on the normwise backward error of an approximate solution to the equality constrained least squares problem minBx=d ‖b − Ax‖2. Instead of minimizing over the four perturbations to A, b, B and d, we fix those to B and d and minimize over the remaining two; we obtain an explicit solution of this simplified minimization problem. Our experiments show that backward error bou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1988
ISSN: 0021-9045
DOI: 10.1016/0021-9045(88)90007-x